در باره انرژي هسته اي بيشتر بدانيم
انرژي هسته اي استفاده اصلي از انرژي هستهاي، توليد انرژي الكتريسته است. اين راهي ساده و كارآمد براي جوشاندن آب و ايجاد بخار براي راهاندازي توربينهاي مولد است. بدون راكتورهاي موجود در نيروگاههاي هستهاي، اين نيروگاهها شبيه ديگر نيروگاهها زغالسنگي و سوختي ميشود. انرژي هستهاي بهترين كاربرد براي توليد مقياس متوسط يا بزرگي از انرژي الكتريكي بهطور مداوم است. سوخت اينگونه ايستگاهها را اوانيوم تشكيل ميدهد. چرخه سوخت هستهاي تعدادي عمليات صنعتي است كه توليد الكتريسته را با اورانيوم در راكتورهاي هستهاي ممكن ميكند. اورانيوم عنصري نسبتاً معمولي و عادي است كه در تمام دنيا يافت ميشود. اين عنصر بهصورت معدني در بعضي از كشورها وجود دارد كه حتماً بايد قبل از مصرف به صورت سوخت در راكتورهاي هستهاي، فرآوري شود. الكتريسته با استفاده از گرماي توليد شده در راكتورهاي هستهاي
EXloxblog.comEX
در باره انرژي هسته اي بيشتر بدانيم
انرژي هسته اي
استفاده اصلي از انرژي هستهاي، توليد انرژي الكتريسته است. اين راهي ساده و كارآمد براي جوشاندن آب و ايجاد بخار براي راهاندازي توربينهاي مولد است. بدون راكتورهاي موجود در نيروگاههاي هستهاي، اين نيروگاهها شبيه ديگر نيروگاهها زغالسنگي و سوختي ميشود. انرژي هستهاي بهترين كاربرد براي توليد مقياس متوسط يا بزرگي از انرژي الكتريكي بهطور مداوم است. سوخت اينگونه ايستگاهها را اوانيوم تشكيل ميدهد.
چرخه سوخت هستهاي تعدادي عمليات صنعتي است كه توليد الكتريسته را با اورانيوم در راكتورهاي هستهاي ممكن ميكند.
اورانيوم عنصري نسبتاً معمولي و عادي است كه در تمام دنيا يافت ميشود. اين عنصر بهصورت معدني در بعضي از كشورها وجود دارد كه حتماً بايد قبل از مصرف به صورت سوخت در راكتورهاي هستهاي، فرآوري شود.
الكتريسته با استفاده از گرماي توليد شده در راكتورهاي هستهاي و با ايجاد بخار براي بهكار انداختن توربينهايي كه به مولد متصلاند توليد ميشود.
سوختي كه از راكتور خارج شده، بعداز اين كه به پايان عمر مفيد خود رسيد ميتواند به عنوان سوختي جديد استفاده شود.
فعاليتهاي مختلفي كه با توليد الكتريسيته از واكنشهاي هستهاي همراهند مرتبط به چرخه سوخت هستهاي هستند. چرخه سوختي انرژي هستهاي با اورانيوم آغاز ميشود و با انهدام پسماندههاي هستهاي پايان مييابد. دوبار عملآوري سوختهاي خرج شده به مرحلههاي چرخه سوخت هستهاي شكلي صحيح ميدهد.
اورانيوم
اورانيوم فلزي راديواكتيو و پرتوزاست كه در سراسر پوسته سخت زمين موجود است. اين فلز حدوداً 500 بار از طلا فراوانتر و به اندازه قوطي حلبي معمولي و عادي است. اورانيوم اكنون به اندازهاي در صخرهها و خاك و زمين وجود دارد كه در آب رودخانهها، درياها و اقيانوسها موجود است. براي مثال اين فلز با غلظتي در حدود 4 قسمت در هر ميليون (ppm4) در گرانيت وجود دارد كه 60 درصد از كره زمين را شامل ميشود، در كودها با غلظتي بالغ بر ppm400 و در تهمانده زغالسنگ با غلظتي بيش از ppm100 موجود است. اكثر راديو اكتيويته مربوط به اورانيوم در طبيعت در حقيقت ناشي از معدنهاي ديگري است كه با عمليات راديواكتيو به وجود آمدهاند و در هنگام استخراج از معدن و آسياب كردن به جا ماندهاند. چند منطقه در سراسر دنيا وجود دارد كه غلظت اورانيوم موجود در آنها به قدر كافي است كه استخراج آن براي استفاده از نظر اقتصادي به صرفه و امكانپذير است. اين نوع مواد غليظ، سنگ معدن يا كانه ناميده ميشوند. - چرخه سوخت هستهاي (شكل هندسي) (عكس)
استخراج اورانيوم
هر دو نوع حفاري و تكنيكهاي موقعيتي براي كشف كردن اورانيوم به كار ميروند، حفاري ممكن است به صورت زيرزميني يا چالهاي باز و روي زمين انجام شود. در كل، حفاريهاي روزميني در جاهايي استفاده ميشود كه ذخيره معدني نزديك به سطح زمين و حفاريهاي زيرزميني براي ذخيرههاي معدني عميقتر به كار ميرود. بهطور نمونه براي حفاري روزميني بيشتر از 120 متر عمق، نياز به گودالهاي بزرگي بر سطح زمين است؛ اندازه گودالها بايد بزرگتر از اندازه ذخيره معدني باشد تا زماني كه ديوارههاي گودال محكم شوند تا مانع ريزش آنها شود. در نتيجه، تعداد موادي كه بايد به بيرون از معدن انتقال داده شود تا به كانه دسترسي پيدا كند زياد است. حفاريهاي زيرزميني داراي خرابي و اخلالهاي كمتري در سطح زمين هستند و تعداد موادي كه بايد براي دسترسي به سنگ معدن يا كانه به بيرون از معدن انتقال داده شوند بهطور قابل ملاحظهاي كمتر از حفاري نوع روزميني است. مقدار زيادي از اورانيوم جهاني از (ISL) (In Sitaleding) ميآيد. جايي كه آبهاي اكسيژنه زيرزميني در معدنهاي كانهاي پرمنفذ به گردش ميافتند تا اورانيوم موجود در معدن را در خود حل كنند و آن را به سطح زمين آورند. (ISL) شايد با اسيد رقيق يا با محلولهاي قليايي همراه باشد تا اورانيوم را محلول نگهدارد، سپس اورانيوم در كارخانههاي آسيابسازي اورانيوم، از محلول خود جدا ميشود. در نتيجه انتخاب روش حفاري براي تهنشين كردن اورانيوم بستگي به جنس ديواره معدن كانه سنگ، امنيت و ملاحظات اقتصادي دارد. در غالب معدنهاي زيرزميني اورانيوم، پيشگيريهاي مخصوصي كه شامل افزايش تهويه هوا ميشود، لازم است تا از پرتوافشاني جلوگيري شود.
آسياب كردن اورانيوم
محل آسياب كردن معمولاً به معدن استخراج اورانيوم نزديك است. بيشتر امكانات استخراجي شامل يك آسياب ميشود. هرچه جايي كه معدنها قرار دارند به هم نزديكتر باشند يك آسياب ميتواند عمل آسيابسازي چند معدن را انجام دهد. عمل آسيابسازي اكسيد اورانيوم غليظي توليد ميكند كه از آسياب حمل ميشود. گاهي اوقات به اين اكسيدها كيك زرد ميگويند كه شامل 80 درصد اورانيوم ميباشد. سنگ معدن اصل شايد داراي چيزي در حدود 1/0 درصد اورانيوم باشد. در يك آسياب، اورانيوم با عمل سنگشويي از سنگهاي معدني خرد شده جدا ميشود كه يا با اسيد قوي و يا با محلول قليايي قوي حل ميشود و به صورت محلول در ميآيد. سپس اورانيوم با تهنشين كردن از محلول جدا ميشود و بعداز خشك كردن و معمولاً حرارت دادن به صورت اشباع شده و غليظ در استوانههاي 200 ليتري بستهبندي ميشود. باقيمانده سنگ معدن كه بيشتر شامل مواد پرتوزا و سنگ معدن ميشود در محلي معين به دور از محيط معدن در امكانات مهندسي نگهداري ميشود. (معمولاً در گودالهايي روي زمين). پسماندههاي داراي مواد راديواكتيو عمري طولاني دارند و غلظت آنها كم خاصيتي سمي دارند. هرچند مقدار كلي عناصر پرتوزا كمتر از سنگ معدن اصلي است و نيمه عمر آنها كوتاه خواهد بود اما اين مواد بايد از محيط زيست دور بمانند.
تبديل و تغيير
محلول آسياب شده اورانيوم مستقيماً قابل استفاده بهعنوان سوخت در راكتورهاي هستهاي نيست. پردازش اضافي به غنيسازي اورانيوم مربوط است كه براي تمام راكتورها لازم است. اين عمل اورانيوم را به نوع گازي تبديل ميكند و راه بهدست آوردن آن تبديل كردن به هگزا فلوريد (Hexa Fluoride) است كه در دماي نسبتاً پايين گاز است. در وسيلهاي تبديلگر، اورانيوم به اورانيوم دياكسيد تبديل ميشود كه در راكتورهايي كه نياز به اورانيوم غني شده ندارند استفاده ميشود. بيشتر آنها بعداز آن كه به هگزافلوريد تبديل شدند براي غنيسازي در كارخانه آماده هستند و در كانتينرهايي كه از جنس فلز مقاوم و محكم است حمل ميشوند. خطر اصلي اين طبقه از چرخه سوختي اثر هيدروژن فلوريد (Hydrogen Fluoride) است.
مزايايي استفاده از انژري هسته اي
انرژي در جهان امروز يك عامل راهبردي است و اغلب كشورهاي جهان به خصوص آنها كه به دنبال اعمال اراده و قدرت خود بر ديگر كشورها مي باشند از همين دريچه به مقوله انرژي مي نگرند. سوخت هاي فسيلي مانند ذغال سنگ، مقدار قابل توجهي از انواع آلاينده ها همانند تركيبات كربن و گوگرد را وارد محيط زيست مي سازند كه براي سلامت انسان زيانبار است. از سوي ديگر با توجه به افزايش مصرف برق و پايان پذير بودن منابع سوخت فسيلي به نظر مي رسد استفاده از انرژي هسته اي بهترين گزينه موجود باشد. ايران ۳۰ هزار مگاوات نيروگاه دارد و در ده سال آينده، احتمالاً به۶۰ هزار مگاوات خواهد رسيد. بالا رفتن حجم توليد گازهاي گلخانه اي، هزينه هاي اجتماعي خاصي را ايجاد مي كند كه بالطبع بايد جلوي توليد گازهاي گلخانه اي را در نيروگاههاي فسيلي گرفت، در حال حاضر روسيه ۸ ميليون بشكه نفت در روز توليد و حدود ۵ ميليون از آن را صادر مي كند. ۳۰ نيروگاه هسته اي دارد و به سرعت هم به نيروگاههاي خود اضافه مي كند، در حالي كه اولين كشور در ذخاير گازي است و جمعيت آن هم تنها كمي بيشتر از دو برابر ماست. در اين شرايط آمريكا هم ۱۰۵ نيروگاه هسته اي دارد، لذا فقط معيارهاي اقتصادي هم مطرح نيست و معيارهاي مختلف فن آوري تأثير گذار خواهد بود. در واقع تكنولوژي هسته اي، ميعاد گاه تكنولوژي هاي ديگر است. مثل صنعت خودرو كه اگر در يك كشور رونق خوبي داشته باشد، تقريباً بخش عمده اي از تكنولوژي را جلو مي برد، چرا كه بيشتر علوم و تكنولوژي ها مثل مكانيك، شيمي، مواد، برق و... صنعت غني سازي هم عمر كمي ندارد و دست كم ۴۰ سال است كه اين كار شروع شده است. چون در غني سازي اورانيوم جهت استفاده در راكتورهاي هسته اي از علوم مختلف مهندسي، مكانيك، شيمي و... با نهايت دقت و قدرت استفاده مي شود. به طور كلي تعريف جديد مهندسي براساس ميزان دقت است و كشوري پيشرفته ناميده مي شود كه ميزان خطاي مهندسي آن كم باشد. براي رسيدن به استقلال واقعي، بايد به سمت توليد فن آوري و علم رفت. البته اين روند بالطبع هزينه دارد. همه جاي دنيا هم، اين گونه است. به هر حال هزينه رسيدن به تكنولوژي هسته اي با اين همه عظمت، كار و فعاليت همه جانبه متخصصين ايراني و استفاده از تجربه كشورهاي دارنده اين صنعت را طلب مي كند. مقوله انرژي براي كشورهاي سلطه طلب، نقش موتور محركه اقتصاد و توليد ملي و تعيين كننده جايگاه آنها در نظام سرمايه داري جهان را دارد و همچنين تضمين كننده منافع و امنيت ملي آنها است، براي كشور ما نيز چگونگي سامان دهي به سياستهاي بخش انرژي، نقش كليدي در فرآيند تحولات سياسي، اجتماعي و اقتصادي را داراست و لذا ضروري است كه براي انرژي و بخصوص نفت و گاز و به دنبال اينها انرژي هسته اي، برنامه و استراتژي انديشيده و متناسب با شرايط واقعي موجود داخلي و جهاني داشته باشيم. دغدغه اصلي جهان عادت كرده به مصرف انرژي، در دو دهه آينده، توليد انرژي و ساخت نيروگاه اتمي به عنوان تنها راه خروج از بحران انرژي در دهه هاي آينده است. در اين بين از آن جا كه ساخت يك نيروگاه اتمي اغلب علوم و فنون را به كار مي گيرد، نيروگاه برق اتمي، اقتصادي ترين نيروگاهي است كه امروز در دنيا احداث مي شود. انرژي هستهاي در زمينههاي مختلف پزشكي، موزهها، شناسايي كوچكترين شكاف يا ناخالصي در مواد و موتور هواپيما و اتومبيل، پيشگيري از فساد زودرس محصولات كشاورزي و رشد گياهان كاربرد دارد. علم طب شناخت خود را جهت درمان و پيشگيري از بيماري اشعه وسعت داد و همزمان از اشعه به صور مختلف در تشخيص و درمان بيماريها از جمله سرطان استفاده كرد. راديوتراپي جايگاه ويژه در درمان سرطانها پيدا كرد و طب هسته به عنوان يك رشته تخصصي در پزشكي روز وارد شد
پزشكي هسته اي :
تصوير برداري در پزشكي هسته اي توموگرافي تابش پوزيترون (PET) (SPECT) توموروگرافي با استفاده از تابش تك فوتون تصوير برداري قلبي عروقي اسكن استخوان
پزشكي هسته اي و درمان بيماريها
يكي از روشهاي تشخيصي و درماني ارزشمند در طب، پزشكي هسته اي مي باشد. كه تبلور آن از ابتدا تا كنون تلفيقي از كشفيات مهم تاريخي بوده است اولين استفاده كلينيكي مواد راديواكتيو، در سال 1937 جهت درمان لوسمي در دانشگاه كاليفرنيا در بركلي بود. بعــــــد از آن در 1946 با استــــــفاده از اين مواد توانستند در يك بيمار مبتلا به سرطان تيروئـــــيد از پيشرفت اين بيماري جلوگيري كنند. در دهه 1970 توانستند با جاروب نمودن از ارگانهاي ديگر بدن مانند كبد و طحال، تومورهاي مغزي و مجاري گوارشي تصاويري را تهيه نمايند. در دهه 1980 از راديو داروها جهت تشخيص بيماري هاي قلبي استفاده نمودند و هم اكنون نيز با ضريب اطمينان بسيار بالايي از پزشكي هسته اي در درمان و تشخيص و پيگيري روند درمان بيماريها استفاده مي گردد. انرژي هسته اي كاربرداري زياد در پزشكي در علوم و صنعت و كشاورزي و... دارد. لازم به ذكر است انرژي هسته اي به تمامي انرژي هاي ديگر قابل تبديل است ولي هيچ انرژي به انرژي هسته اي تبديل نمي شود .موارد زيادي از كاربردهاي انرژي هسته اي در زير آورده مي شود .
نيروگاه هسته اي (Nuclear Power Station) :
يك نيروگاه الكتريكي كه از انرژي توليدي شكست هسته اتم اورانيوم يا پلوتونيم استفاده مي كند. چون شكست سوخت هسته اي اساساً گرما توليد مي كند از گرماي توليد شده رآكتور هاي هسته اي براي توليد بخار استفاده مي شود از بخار توليد شده براي به حركت در آوردن توربين ها و ژنراتور ها كه نهايتاً براي توليد برق استفاده مي شود . پيل هسته اي يا اتمي دستگاه تبديل كننده انرژي اتمي به جريان برق مستقيم است ساده ترين پيل ها شامل دو صفحه است. يك پخش كننده بتاي خالص مثل استرنيوم 90 و يك هادي مثل سيلسيوم.
كاربردهاي پزشكي:
در پزشكي تشعشعات هسته اي كاربردهاي زيادي دارند كه اهم آنها عبارتند از: • راديو گرافي • گامااسكن • استرليزه كردن هسته اي و ميكروب زدايي وسايل پزشكي با پرتو هاي هسته اي • راديو بيولوژي كاربرد انرژي هسته اي در بخش دامپزشكي و دامپروري : تكنيكهاي هسته اي در حوزه دامپزشكي موارد مصرفي چون تشخيص و درمان بيماريهاي دامي ، توليد مثل دام ، اصلاح نژاد و دام ، تغذيه ، بهداشت و ايمن سازي محصولات دامي و خوراك دام دارد كاربرد انرژي هسته اي در دسترسي به منابع آب : تكنيكهاي هسته اي براي شناسايي حوزه هاي آب زير زميني هدايت آبهاي سطحي و زير زميني ، كشف و كنترل نشت و ايمني سدها مورد استفاده قرار ميگيرد. در شيرين كردن آبهاي شور نيز انرژي هستهاي كاربرد دارد. كاربردهاي كشاورزي: تشعشعات هسته اي كاربرد هاي زيادي در كشاورزي دارد كه مهم ترين آنها عبارتست از: • موتاسيون هسته اي ژن ها در كشاورزي • كنترل حشرات با تشعشعات هسته اي • جلوگيري از جوانه زدن سيب زميني با اشعه گاما • انبار كردن ميوه ها • ديرينه شناسي )باستان شناسي) و صخره شناسي )زمين شناسي) كه عمر يابي صخره ها با C14 در باستان شناسي خيلي مشهور است كاربردهاي صنعتي: در صنعت كاربردها ي زيادي دارد از جمله مهمترين آنها عبارتند از: • نشت يابي با اشعه • دبي سنجي پرتويي(سنجش شدت تشعشعات ، نور و فيزيك امواج) • سنجش پرتويي ميزان سائيدگي قطعات در حين كار • سنجش پرتويي ميزان خوردگي قطعات • چگالي سنج موادمعدني با اشعه • كشف عناصر ناياب در معادن تكنيكهاي هسته اي بر كشف مينهاي ضد نفر نيز كاربرد دارد. بنابرين ، دانش هسته اي با اين قدرت و وسعتي كه دارد، هر روز بر دامنه استفاده از فناوري هسته اي و بويژه انرژي هسته اي افزوده مي شود. كاربرد انرژي در بخشهاي مختلف به گونهاي است كه اگر كشوري فناوري هسته اي را نهادينه نمايد، در بسياري از حوزههاي علمي و صنعتي ، ارتقاي پيدا مي كند و مسير توسعه را با سرعت طي مي نمايد.
انرژي هسته اي در پزشكي هسته اي و امور بهداشتي:
در كشورهاي پيشرفته صنعتي ، از انرژي هسته اي به صورت گسترده در پزشكي استفاده مي گردد. با توجه به شيوع برخي از بيماريها از جمله سرطان ، ضرورت تقويت طب هسته اي در كشورهاي در حال توسعه ، هر روز بيشتر مي شود. موارد زير از مصاديق تكنيكهاي هسته اي در علم پزشكي است: تهيه و توليد كيتهاي راديو دارويي جهت مراكز پزشكي هسته اي تهيه و توليد راديو دارويي جهت تشخيص بيماري تيروييد و درمان آنها تهيه و توليد كيتهاي هورموني تشخيص و درمان سرطان پروستات تشخيص سرطان كولون ، روده كوچك و برخي سرطانهاي سينه تشخيص تومورهاي سرطاني و بررسي تومورهاي مغزي ، سينه و ناراحتي وريدي تصوير برداري بيماريهاي قلبي ، تشخيص عفونتها و التهاب مفصلي ، آمبولي و لختههاي وريدي موارد ديگري چون تشخيص كم خوني ، كنترل راديو داروهاي خوراكي و تزريقي
كاربرد انرژي هسته اي در توليد برق :
يكي از مهم ترين موارد استفاده صلح آميز از انرژي هسته اي ، توليد برق از طريق نيروگاههاي اتمي است. با توم به پايان پذير بودن منابع فسيلي و روند رو به رشد توسعه اجتماعي و اقتصادي ، استفاده از انرژي هسته اي براي توليد برق را امري ضروري و لازم مي دانند و ساخت چند نيروگاه اتمي را دنبال مينمايد. ايران هر ساله حدودا به هفت هزار مگاوات برق در سال نياز دارد. نيروگاه اتمي بوشهر 1000 مگاوات برق را در صورت راه اندازي تامين مي نمايد. و احداث نيروگاههاي ديگر براي رفع اين نيازي ضروري است. براي توليد ميزان برق حدود 190 ميليون بشكه نفت خام مصرف مي شود. كه در صورت تامين از طريق انرژي هسته اي ساليانه 5 ميليارد دلار صرفه جويي خواهد شد.
برتري انرژي هسته اي بر ساير انرژيها:
علاوه بر صرفه اقتصادي دلايل زير استفاده از انرژي هسته اي را ضروري مينمايد. منابع فسيلي محدود بوده و متعلق به نسلهاي آتي ميباشد. استفاده از نفت خام در صنايع تبديل پتروشيمي ارزش بيشتري دارد. توليد برق از طريق نيروگاه اتمي ، آلودگي نيروگاههاي كنوني را ندارد. توليد هفت هزار مگاوات با مصرف 190 ميليون شبكه نفت خام ، هزارتن دياكسيد كربن ، 150 تن ذرات معلق در هوا ، 130 تن گوگرد و 50 تن اكسيد نيتروژن را در محيط زيست پراكنده مي كند، در حالي كه نيروگاه اتمي چنين آلودگي را ندارد. ساختار نيروگاه هاي اتمي جهان و نيز شرح مختصري درباره طرز غني سازي اورانيوم مطالبي در مورد ساختار نيروگاه هاي اتمي جهان و نيز شرح مختصري درباره طرز غني سازي اورانيوم و يا سنتز عنصر پلوتونيوم : برحسب نظريه اتمي عنصر عبارت است از يك جسم خالص ساده كه با روش هاي شيميايي نمي توان آن را تفكيك كرد. از تركيب عناصر با يكديگر اجسام مركب به وجود مي آيند. تعداد عناصر شناخته شده در طبيعت حدود ۹۲ عنصر است. هيدروژن اولين و ساده ترين عنصر و پس از آن هليم، كربن، ازت، اكسيژن و... فلزات روي، مس، آهن، نيكل و... و بالاخره آخرين عنصر طبيعي به شماره ۹۲، عنصر اورانيوم است. بشر توانسته است به طور مصنوعي و به كمك واكنش هاي هسته اي در راكتورهاي اتمي و يا به كمك شتاب دهنده هاي قوي بيش از ۲۰ عنصر ديگر بسازد كه تمام آن ها ناپايدارند و عمر كوتاه دارند و به سرعت با انتشار پرتوهايي تخريب مي شوند. اتم هاي يك عنصر از اجتماع ذرات بنيادي به نام پرتون، نوترون و الكترون تشكيل يافته اند. پروتون بار مثبت و الكترون بار منفي و نوترون فاقد بار است. تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبي (جدول مندليف) مشخص مي كند. اتم هيدروژن يك پروتون دارد و در خانه شماره ۱ جدول و اتم هليم در خانه شماره ۲، اتم سديم در خانه شماره ۱۱ و... و اتم اورانيوم در خانه شماره ۹۲ قرار دارد. يعني داراي ۹۲ پروتون است.
ايزوتوپ هاي اورانيوم
تعداد نوترون ها در اتم هاي مختلف يك عنصر همواره يكسان نيست كه براي مشخص كردن آنها از كلمه ايزوتوپ استفاده مي شود. بنابراين اتم هاي مختلف يك عنصر را ايزوتوپ مي گويند. مثلاً عنصر هيدروژن سه ايزوتوپ دارد: هيدروژن معمولي كه فقط يك پروتون دارد و فاقد نوترون است. هيدروژن سنگين يك پروتون و يك نوترون دارد كه به آن دوتريم گويند و نهايتاً تريتيم كه از دو نوترون و يك پروتون تشكيل شده و ناپايدار است و طي زمان تجزيه مي شود. ايزوتوپ سنگين هيدروژن يعني دوتريم در نيروگاه هاي اتمي كاربرد دارد و از الكتروليز آب به دست مي آيد. در جنگ دوم جهاني آلماني ها براي ساختن نيروگاه اتمي و تهيه بمب اتمي در سوئد و نروژ مقادير بسيار زيادي آب سنگين تهيه كرده بودند كه انگليسي ها متوجه منظور آلماني ها شده و مخازن و دستگاه هاي الكتروليز آنها را نابود كردند. غالب عناصر ايزوتوپ دارند از آن جمله عنصر اورانيوم، چهار ايزوتوپ دارد كه فقط دو ايزوتوپ آن به علت داشتن نيمه عمر نسبتاً بالا در طبيعت و در سنگ معدن يافت مي شوند. اين دو ايزوتوپ عبارتند از اورانيوم ۲۳۵ و اورانيوم ۲۳۸ كه در هر دو ۹۲ پروتون وجود دارد ولي اولي ۱۴۳ و دومي ۱۴۶ نوترون دارد. اختلاف اين دو فقط وجود ۳ نوترون اضافي در ايزوتوپ سنگين است ولي از نظر خواص شيميايي اين دو ايزوتوپ كاملاً يكسان هستند و براي جداسازي آنها از يكديگر حتماً بايد از خواص فيزيكي آنها يعني اختلاف جرم ايزوتوپ ها استفاده كرد. ايزوتوپ اورانيوم ۲۳۵ شكست پذير است و در نيروگاه هاي اتمي از اين خاصيت استفاده مي شود و حرارت ايجاد شده در اثر اين شكست را تبديل به انرژي الكتريكي مي نمايند. در واقع ورود يك نوترون به درون هسته اين اتم سبب شكست آن شده و به ازاي هر اتم شكسته شده ۲۰۰ ميليون الكترون ولت انرژي و دو تكه شكست و تعدادي نوترون حاصل مي شود كه مي توانند اتم هاي ديگر را بشكنند. بنابراين در برخي از نيروگاه ها ترجيح مي دهند تا حدي اين ايزوتوپ را در مخلوط طبيعي دو ايزوتوپ غني كنند و بدين ترتيب مسئله غني سازي اورانيوم مطرح مي شود.
ساختار نيروگاه اتمي
به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم. طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران ۱۵ نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبيل (Tchernobyl) در روسيه در ۲۶ آوريل ۱۹۸۶، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد. نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از: ۱ _ ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است. عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم ۲۳۵ عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد. در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با ۲۰۰ ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد. اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد. به عنوان مثال نيروگاهي كه داراي ۱۰ تن اورانيوم طبيعي است قدرتي معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانيوم ۲۳۵ در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم ۲۳۸ اورانيوم ۲۳۹ به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم ۲۳۹ تبديل مي شود كه خود مانند اورانيوم ۲۳۵ شكست پذير است. در اين عمل ۷۰ گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد. ۲ _ نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت) به عنوان نرم كننده نوترون به كار برده مي شوند. ۳ _ ميله هاي مهاركننده: اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند. ۴ _ مواد خنك كننده يا انتقال دهنده انرژي حرارتي: اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند.
غني سازي اورانيم
سنگ معدن اورانيوم موجود در طبيعت از دو ايزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانيوم ۲۳۸ به مقدار ۳/۹۹ درصد تشكيل شده است. سنگ معدن را ابتدا در اسيد حل كرده و بعد از تخليص فلز، اورانيوم را به صورت تركيب با اتم فلئور (F) و به صورت مولكول اورانيوم هكزا فلورايد UF6 تبديل مي كنند كه به حالت گازي است. سرعت متوسط مولكول هاي گازي با جرم مولكولي گاز نسبت عكس دارد اين پديده را گراهان در سال ۱۸۶۴ كشف كرد. از اين پديده كه به نام ديفوزيون گازي مشهور است براي غني سازي اورانيوم استفاده مي كنند.در عمل اورانيوم هكزا فلورايد طبيعي گازي شكل را از ستون هايي كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور مي دهند. منافذ موجود در جسم متخلخل بايد قدري بيشتر از شعاع اتمي يعني در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتيمتر) باشد. ضريب جداسازي متناسب با اختلاف جرم مولكول ها است.روش غني سازي اورانيوم تقريباً مطابق همين اصولي است كه در اينجا گفته شد. با وجود اين مي توان به خوبي حدس زد كه پرخرج ترين مرحله تهيه سوخت اتمي همين مرحله غني سازي ايزوتوپ ها است زيرا از هر هزاران كيلو سنگ معدن اورانيوم ۱۴۰ كيلوگرم اورانيوم طبيعي به دست مي آيد كه فقط يك كيلوگرم اورانيوم ۲۳۵ خالص در آن وجود دارد. براي تهيه و تغليظ اورانيوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پي درپي لازم است تا نسبت ايزوتوپ ها تا از برخي به برج ديگر به مقدار ۰۱/۰ درصد تغيير پيدا كند. در نهايت موقعي كه نسبت اورانيوم ۲۳۵ به اورانيوم ۲۳۸ به ۵ درصد رسيد بايد براي تخليص كامل از سانتريفوژهاي بسيار قوي استفاده نمود. براي ساختن نيروگاه اتمي، اورانيوم طبيعي و يا اورانيوم غني شده بين ۱ تا ۵ درصد كافي است. ولي براي تهيه بمب اتمي حداقل ۵ تا ۶ كيلوگرم اورانيوم ۲۳۵ صددرصد خالص نياز است. عملا در صنايع نظامي از اين روش استفاده نمي شود و بمب هاي اتمي را از پلوتونيوم ۲۳۹ كه سنتز و تخليص شيميايي آن بسيار ساده تر است تهيه مي كنند. عنصر اخير را در نيروگاه هاي بسيار قوي مي سازند كه تعداد نوترون هاي موجود در آنها از صدها هزار ميليارد نوترون در ثانيه در سانتيمتر مربع تجاوز مي كند. عملاً كليه بمب هاي اتمي موجود در زراد خانه هاي جهان از اين عنصر درست مي شود.روش ساخت اين عنصر در داخل نيروگاه هاي اتمي به صورت زير است: ايزوتوپ هاي اورانيوم ۲۳۸ شكست پذير نيستند ولي جاذب نوترون كم انرژي (نوترون حرارتي هستند. تعدادي از نوترون هاي حاصل از شكست اورانيوم ۲۳۵ را جذب مي كنند و تبديل به اورانيوم ۲۳۹ مي شوند. اين ايزوتوپ از اورانيوم بسيار ناپايدار است و در كمتر از ده ساعت تمام اتم هاي به وجود آمده تخريب مي شوند. در درون هسته پايدار اورانيوم ۲۳۹ يكي از نوترون ها خودبه خود به پروتون و يك الكترون تبديل مي شود.بنابراين تعداد پروتون ها يكي اضافه شده و عنصر جديد را كه ۹۳ پروتون دارد نپتونيم مي نامند كه اين عنصر نيز ناپايدار است و يكي از نوترون هاي آن خود به خود به پروتون تبديل مي شود و در نتيجه به تعداد پروتون ها يكي اضافه شده و عنصر جديد كه ۹۴ پروتون دارد را پلوتونيم مي نامند. اين تجربه طي چندين روز انجام مي گيرد. چرخه سوخت هسته اي از استخراج اورانيوم تا توليد انرژي

استخراج اورانيوم از معدن
اورانيوم كه ماده خام اصلي مورد نياز براي توليد انرژي در برنامه هاي صلح آميز يا نظامي هسته اي است، از طريق استخراج از معادن زيرزميني يا سر باز بدست مي آيد. اگر چه اين عنصر بطور طبيعي در سرتاسر جهان يافت ميشود اما تنها حجم كوچكي از آن بصورت متراكم در معادن موجود است. هنگامي كه هسته اتم اورانيوم در يك واكنش زنجيره اي شكافته شود مقداري انرژي آزاد خواهد شد. براي شكافت هسته اتم اورانيوم، يك نوترون به هسته آن شليك ميشود و در نتيجه اين فرايند، اتم مذكور به دو اتم كوچكتر تجزيه شده و تعدادي نوترون جديد نيز آزاد ميشود كه هركدام به نوبه خود ميتوانند هسته هاي جديدي را در يك فرايند زنجيره اي تجزيه كنند.

جموع جرم اتمهاي كوچكتري كه از تجزيه اتم اورانيوم بدست مي آيد ازز كل جرم اوليه اين اتم كمتر است و اين بدان معناست كه مقداري از جرم اوليه كه ظاهرا ناپديد شده در واقع به انرژي تبديل شده است، و اين انرژي با استفاده از رابطه E=MC۲ يعني رابطه جرم و انرژي كه آلبرت اينشتين نخستين بار آنرا كشف كرد قابل محاسبه است. اورانيوم به صورت دو ايزوتوپ مختلف در طبيعت يافت ميشود. يعني اورانيوم U۲۳۵ يا U۲۳۸ كه هر دو داراي تعداد پروتون يكساني بوده و تنها تفاوتشان در سه نوترون اضافه اي است كه در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بيانگر مجموع تعداد پروتونها و نوترونها در هسته هر كدام از اين دو ايزوتوپ است.
كشورهاي اصلي توليد كننده اورانيوم
استراليا چين كانادا قزاقستان ناميبيا نيجر روسيه ازبكستان براي بدست آوردن بالاترين بازدهي در فرايند زنجيره اي شكافت هسته بايد از اورانيوم ۲۳۵ استفاده كرد كه هسته آن به سادگي شكافته ميشود. هنگامي كه اين نوع اورانيوم به اتمهاي كوچكتر تجزيه ميشود علاوه بر آزاد شدن مقداري انرژي حرارتي دو يا سه نوترون جديد نيز رها ميشود كه در صورت برخورد با اتمهاي جديد اورانيوم بازهم انرژي حرارتي بيشتر و نوترونهاي جديد آزاد ميشود. اما بدليل "نيمه عمر" كوتاه اورانيوم ۲۳۵ و فروپاشي سريع آن، اين ايزوتوپ در طبيعت بسيار نادر است بطوري كه از هر ۱۰۰۰ اتم اورانيوم موجود در طبيعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقي از نوع سنگينتر U۲۳۸ است. فراوري: سنگ معدن اورانيوم بعد از استخراج، در آسيابهائي خرد و به گردي نرم تبديل ميشود. گرد بدست آمده سپس در يك فرايند شيميائي به ماده جامد زرد رنگي تبديل ميشود كه به كيك زرد موسوم است. كيك زرد داراي خاصيت راديو اكتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشكيل ميدهد. دانشمندان هسته اي براي دست يابي هرچه بيشتر به ايزوتوپ نادر U۲۳۵ كه در توليد انرژي هسته اي نقشي كليدي دارد، از روشي موسوم به غني سازي استفاده مي كنند. براي اين كار، دانشمندان ابتدا كيك زرد را طي فرايندي شيميائي به ماده جامدي به نام هگزافلوئوريد اورانيوم تبديل ميكنند كه بعد از حرارت داده شدن در دماي حدود ۶۴ درجه سانتيگراد به گاز تبديل ميشود.

بايد اين گاز را دور از معرض روغن و مواد چرب كننده ديگر نگهداري كرد.
غني سازي:
هدف از غني سازي توليد اورانيومي است كه داراي درصد بالايي از ايزوتوپ U۲۳۵ باشد. اورانيوم مورد استفاده در راكتورهاي اتمي بايد به حدي غني شود كه حاوي ۲ تا ۳ درصد اورانيوم ۲۳۵ باشد، در حالي كه اورانيومي كه در ساخت بمب اتمي بكار ميرود حداقل بايد حاوي ۹۰ درصد اورانيوم ۲۳۵ باشد. يكي از روشهاي معمول غني سازي استفاده از دستگاههاي سانتريفوژ گاز است. سانتريفوژ از اتاقكي سيلندري شكل تشكيل شده كه با سرعت بسيار زياد حول محور خود مي چرخد. هنگامي كه گاز هگزا فلوئوريد اورانيوم به داخل اين سيلندر دميده شود نيروي گريز از مركز ناشي از چرخش آن باعث ميشود كه مولكولهاي سبكتري كه حاوي اورانيوم ۲۳۵ است در مركز سيلندر متمركز شوند و مولكولهاي سنگينتري كه حاوي اورانيوم ۲۳۸ هستند در پايين سيلندر انباشته شوند.

كيك زرد داراي خاصيت راديو اكتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشكيل ميدهد هگزافلوئوريد اورانيوم كه در صنعت با نام ساده هگز شناخته ميشود ماده شيميائي خورنده ايست كه بايد آنرا با احتياط نگهداري و جابجا كرد. به همين دليل پمپها و لوله هائي كه براي انتقال اين گاز در تاسيسات فراوري اورانيوم بكار ميروند بايد از آلومينيوم و آلياژهاي نيكل ساخته شوند. همچنين به منظور پيشگيري از هرگونه واكنش شيميايي برگشت ناپذير ورانيوم ۲۳۵ غني شده اي كه از اين طريق بدست مي آيد سپس به داخلاخل سانتريفوژ ديگري دميده ميشود تا درجه خلوص آن باز هم بالاتر رود. اين عمل بارها و بارها توسط سانتريفوژهاي متعددي كه بطور سري به يكديگر متصل ميشوند تكرار ميشود تا جايي كه اورانيوم ۲۳۵ با درصد خلوص مورد نياز بدست آيد. آنچه كه پس از جدا سازي اورانيوم ۲۳۵ باقي ميماند به نام اورانيوم خالي يا فقير شده شناخته ميشود كه اساسا از اورانيوم ۲۳۸ تشكيل يافته است. اورانيوم خالي فلز بسيار سنگيني است كه اندكي خاصيت راديو اكتيويته دارد و از آن براي ساخت گلوله هاي توپ ضد زره پوش و اجزاي برخي جنگ افزار هاي ديگر از جمله منعكس كننده نوتروني در بمب اتمي استفاده ميشود. يك شيوه ديگر غني سازي روشي موسوم به ديفيوژن يا روش انتشاري است. دراين روش گاز هگزافلوئوريد اورانيوم به داخل ستونهايي كه جدار آنها از اجسام متخلخل تشكيل شده دميده ميشود. سوراخهاي موجود در جسم متخلخل بايد قدري از قطر مولكول هگزافلوئوريد اورانيوم بزرگتر باشد. در نتيجه اين كار مولكولهاي سبكتر حاوي اورانيوم ۲۳۵ با سرعت بيشتري در اين ستونها منتشر شده و تفكيك ميشوند. اين روش غني سازي نيز بايد مانند روش سانتريفوژ بارها و باره تكرار شود.
راكتور هسته اي:
راكتور هسته اي وسيله ايست كه در آن فرايند شكافت هسته اي بصورت كنترل شده انجام ميگيرد. انرژي حرارتي بدست آمده از اين طريق را مي توان براي بخار كردن آب و به گردش